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ABSTRACT

Silylcupration of multiple bonds (allenes, acetylenes, dienes, and
styrenes) has become one of the most efficient procedures for the
synthesis of vinyl- and allylsilanes. These substrates are useful
building blocks in organic synthesis since they undergo a great
variety of silicon-assisted transformations. The methodology re-
ported has been widely used in the synthesis of different natural
products, as well as in the construction of carbo- and heterocycles.
In this Account, we wish to illustrate our contribution to this field,
as well as to highlight the contributions of others.

Introduction

Organosilanes are interesting building blocks in organic
synthesis due to the large number of transformations that
the C—Si bond can undergo.! Among them allyl- and
vinylsilanes have gained considerable importance as usual
synthetic intermediates. Over the last few decades con-
siderable effort has been made to find new routes for the
preparation of these derivatives and for their selective
reaction with different electrophiles.

Silylmetalation of multiple bonds is one of the most
attractive strategies for the efficient synthesis of these
compounds.? In particular, the silylcupration of allenes
and acetylenes provides an easy entry to the synthesis of
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allyl- and vinylsilanes since it allows the introduction of
two different metals (Si and Cu) across a C—C multiple
bond (Scheme 1). The regio- and stereochemistry of these
processes have been abundantly studied and are very well
established.

Silylcupration of C—C Multiple Bonds

It has been shown that the silylcupration of allenes occurs
syn stereospecifically® (Scheme 1) giving rise to the
formation of intermediate cuprates, which react with
electrophiles to afford either vinyl- or allylsilanes. The
regiochemistry of the addition depends on various factors
such as the nature of the cuprate, the substitution of the
allene, the temperature of the reaction, and the nature of
the silyl group. Thus, the reaction of 1,2-propadiene with
higher order silylcyanocuprates 1 containing the phen-
yldimethylsilyl group gives,*® at any temperature between
—78 and 0 °C, a vinylsilane—allylcuprate intermediate 2,
which readily reacts with a wide variety of electrophiles
leading to the corresponding vinylsilanes (Scheme 2).

The silylcupration of allenes was confirmed to be
reversible from the experience with trimethylallene.® Thus,
when the reaction was carried out and quenched at —78
°C, the allylsilane derivative was obtained. Instead, when
the intermediate was warmed to 0 °C for 1 h before
quenching at —78 °C, the reaction gave a mixture of the
allyl- and vinylsilane derivatives in an equimolar ratio
(Scheme 3).

Noteworthy, the use of a lower order cuprate, the
phenyldimethylsilylcuprate reagent 3, in an analogous
addition to allene provides a completely different regio-
chemistry pattern.® The reaction now shows temperature
dependence, giving allylsilane 4, the kinetic product, at
—40 °C and vinylsilane 5, the thermodynamic product, at
0 °C, which again is accounted by the reversibility of the
reaction. This result has great interest since it opens a
route for the synthesis of functionalized allylsilanes 6
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(Scheme 4). Lately other authors have used our methodol-
ogy with success in the synthesis of silylated 1,4-dienes,’
using allylic phosphates as electrophiles (Scheme 5).

Another factor that greatly influences the regioselec-
tivity of the process is the steric hindrance of the silyl
group attached to copper.? Thus the reaction of the higher
order cuprate (‘BuPh,Si),CuCNLi,, 7, with allene at —78
°C gives rise to an allylsilane—vinylcuprate intermediate
8 where the bulky silyl group prefers the end of the allenic
system (Scheme 6). Again the reaction seems to be
reversible, since when the intermediate 8 was warmed to
0 °C before quenching, the vinylsilane regioisomer was
obtained selectively.

The metallocupration of triple bonds is also a powerful
tool for organic synthesis. The silylcupration of acetylenes
shows® high regio- and stereoselectivity leading to Z or E
vinylsilanes, where the Si is usually bonded to the less-
substituted carbon of the multiple bond in a syn-addition
process. A mechanistic approach to this process has been
proposed that involves an oxidative addition step to yield
Cu(lll) species, followed by reductive elimination to give
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the vinylmetal intermediate. Special interest shows the
preparation of bimetalated alkenes (disilylethylenes and
silylstannylethylenes) using this methodology (Scheme 7).

Silylcupration also works with 1-aminoalkynes,* pro-
pargyl sulfides,™ propargyl ethers,'? and propargylamines,?
the latter used for the synthesis of saturated vy-silyl-a-
amino acids (Scheme 8). Intramolecular trapping of the
vinylcuprate intermediate allows the synthesis of meth-
ylenecyclopentanes.** The substrates used for this silyl-
cupration—ring formation have been w-alkynyl tosylates,
mesilates, ketones, and epoxides (Scheme 9).

Recently Béackvall and colleagues have explored the
silylcupration of terminal 1,3-dienes'® using our low-order
cuprate 3 with excellent results. The regioselectivity of the
reaction depends on the electrophile used, producing the
products of 1,2-addition when the electrophile is carbon
dioxide and the products of 1,4-addition when allylic
phosphonates are employed. Thus, trapping of the inter-
mediate cuprate with allylic phosphates provides a simple
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route for the synthesis of silylated 1,5-dienes 9 (Scheme
10), which are useful intermediates in organic chemistry.

The same authors have reported the silylcupration of
substituted and unsubstituted styrenes,'%2 though this
reaction is much slower than that of acetylenes or allenes.
The copper intermediate obtained can be easily trapped
by different electrophiles, including allylic phosphonates.
An anionic mechanism involving a copper(l1l) intermedi-
ate seems to be plausible!® (Scheme 11).

Synthetic Applications

The methodology reported so far establishes a simple and
convenient route for the introduction of silicon in organic
molecules, thus providing a useful entry to the synthesis
of small silicon synthons of wide synthetic applications.
The vinyl- and allylsilanes formed are extremely useful
intermediates in organic synthesis.
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Reactivity of Vinylsilanes. The stereochemistry of the
enamide moiety of a potent cytotoxic agent (salicylihala-
mide) has been controlled!’ using E-vinylsilanes obtained
by silylcupration of alkynes. Silicon-directed ring opening
of the silyl epoxide 10 with NaNj; furnished, after reduc-
tion, amino alcohol 11 with high stereoselectivity. Reac-
tion with pivaloyl chloride followed by Peterson elimina-
tion of the resulting g-hydroxysilane provided cleanly the
E-enamide (Scheme 12).

Vinylsilanes containing the tert-butyldiphenylsilyl group*®
12 have been used in our group for the preparation of
a-silyl-substituted aldehydes 13 and ketones 14, com-
pounds that play an important role as crucial structures
in organic synthesis.'*?° The introduction of the bulky tert-
butyldiphenylsilyl group a to a carbonyl group helps to
overcome some of the difficulties associated with the
lability of these compounds,?! since only a-silyl aldehydes
bearing crowded silyl groups are stable enough to be
isolated.?? Preparation of these compounds has been
achieved in three steps involving silylcupration of acetyl-
enes, epoxidation of the resulting vinylsilanes, and sub-
sequent acid-catalyzed rearrangement of the correspond-
ing epoxysilanes.?® Experimental evidence indicates that
the mechanism of the rearrangement involves cleavage
of the C—0O bond g to the silicon and migration of the
silyl group?® (Scheme 13).

One of the most interesting synthetic applications of
these a-tert-butyldiphenylsilyl aldehydes 13 lies in their
ability to get converted into Z and E alkenes.’® Thus,
nucleophilic addition of organolithium and Grignard
reagents to these carbonyl compounds provides p-hy-
droxysilanes, according to the Felkin—Anh model. The
addition takes place with a high degree of diastereose-
lectivity to form exclusively anti-5-hydroxysilanes, which
presumably is due to the bulkiness of the silyl group o to
the aldehyde. The g-elimination step of the S-hydroxysi-

VOL. 37, NO. 10, 2004 / ACCOUNTS OF CHEMICAL RESEARCH 819



Allylsilanes and Vinylsilanes from Silylcupration Barbero and Pulido

Scheme 14
SiPhBu  R*M SiPh,'Bu
R ~_.OH
R'” CHO 78°C RTTY
/\|2
13 R
70-90%
BF3.0FEt,
KH
Rt?\RZ
87% R
/\II?Z
80-93%
Scheme 15
SiPh,'Bu BuLi Ph/xrBu
Ph 0 -78°C
E:Z/85:15 70%
14
Scheme 16
(PhMe,Si),CuLi
1 CiiHaz A~
CiHp—= 16 SiMe,Ph
15
1. Brp, NaOMe
2. Li
3. CuBr.SMe,
WNHCHO
0“0 o ° H )
/r\ ' ~—— 11 2\3\>/CULI
Ci1H23 v CgH13 = 2
17

lanes under acidic or basic conditions, cleanly leads to Z
or E disubstituted alkenes (Scheme 14).

The possibility of obtaining trisubstituted alkenes via
reaction of S-tert-butyldiphenyl ketones 14 with organo-
metallics has also been explored.'® This time, the isolation
of the intermediate S-hydroxysilane is not possible be-
cause it undergoes “in situ” a syn f-elimination process.
The stereoselectivity of the reaction with ketones 14 is
lower than the corresponding reaction with aldehydes 13
but still favors the expected trisubstituted alkenes accord-
ing to the Felkin—Anh model (Scheme 15).

Fleming et al. have used the silylcupration of alkynes
to control the geometry of the double bond of an
intermediate in the synthesis of (—)tetrahydrolipstatin.?*
A completely regioselective syn stereospecific silylcupra-
tion of the terminal alkyne 15 gave only the trans
vinylsilane 16, which was converted to the cis cuprate 17
by bromodesilylation and subsequent halogen—Ilithium
exchange (Scheme 16).

Mandal has used the silylcupration of acetylene 18 to
obtain the corresponding vinylsilane, which was con-
verted® with retention of configuration into the vinyl
iodide derivative 19, which is an intermediate in the total
synthesis of (—)-ebelactone A (Scheme 17).

Reactivity of Allylsilanes. The construction of conju-
gated dienes in a single chemical step represents a
particularly efficient approach to the synthesis of complex
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molecular structures, since such systems are present in
many natural pheromones. Although the coupling of two
vinylic fragments has been well established using pal-
ladium-catalyzed reactions,?® the direct coupling between
an alkenylcopper and a vinylhalide has received little
attention. In fact, Normant and co-workers?’ reported that
lithium alkenylcuprates as well as alkenylcopper reagents
showed little reactivity toward vinyl halides. Recently, we
reported?® the palladium-mediated coupling reaction of
an allylsilane—vinylcopper reagent and alkenylhalides.
This organocopper reagent, obtained by silylcupration of
allenes, reacts in the presence of Pd(0) catalysts with
vinylic halides, leading to sililated 1,2-dienes 20 with
retention of configuration (Scheme 18).

Due to the known nucleophilicity of allylsilanes, the
synthons thus obtained can be formally considered as
synthetic equivalents of an isoprenyl anion? and thus
used in the construction of terpenoid structures such as
ipsenol and ipsdienol (Scheme 19).

The importance of five-, six-, and seven-membered
rings in organic synthesis is exemplified by their being the
structural core of a large number of biologically important
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natural products and serving as target molecules for
numerous synthetic studies. Thus, we have used allylsi-
lanes as synthetically useful tools for the synthesis of
methylenecyclopentanols and other related bi- or tricycles.

Silylcupration of allene followed by trapping of the
allylsilane—vinylcopper intermediate with o,3-unsaturated
acid chlorides and ketones provides an easy method of
obtention of oxoallylsilanes 21c—g or silylated divinyl
ketones?*® 21a,b (Scheme 20). Oxoallylsilanes 21c—g
containing a nucleophilic allylsilane unit and an electro-
philic carbonyl moiety undergo intramolecular allylsilane-
terminated cyclization when treated with a Lewis acid,?%%
leading to methylenecyclopentanols 22c—g (Scheme 21).
Divinyl ketones 21a,b undergo silicon-directed Nazarov
cyclization when treated with TFA, leading to conjugate
methylenecyclopentenones 22a,b. Both methods are simple
and efficient approaches to cyclopentane annulations. The
cyclization reaction shows a high level of stereoselectivity
in the formation of fused bi- and tricyclopentanols. This
route allowed the preparation of derivatives of -capnel-
lene.®°

Moreover the synthesis of seven-membered hydroxy-
cycloalkenes and seven-membered oxacycloalkenes has
been achieved through intramolecular cyclization of al-
lylsilanes®! 23a,b, which were obtained by palladium-
catalyzed intramolecular bis-silylation of optically active
allylic alcohols (Scheme 22).
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Ketones containing both an allylsilane group and a
vinylsilane moiety 24 have been prepared in our labora-
tory through an interesting tandem diaddition process by
silylcupration of allene and capture of the intermediate
species with o,S-unsaturated nitriles.®? The silyldifunc-
tionalized ketone results from consecutive diaddition (1,2
and 1,4) of the intermediate allyl- and vinylcopper species
formed in the silylcupration of allene. The diadducts
undergo selective intramolecular allylsilane-terminated
cyclization, while the vinylsilane unit remains unchanged
(Scheme 23).

Traditionally strong Lewis acids, such as TiCl,, BF;-OEt,,
and SnCl,, have been used in the addition of allylsilanes
to carbonyl compounds.®® The use of metal triflates as
catalyst in these reactions has also been described.®* The
development of new reagents with greater efficiency has
attracted great interest. Thus, recently the use of iodine
has been described as an efficient catalyst® for the
allylation of aldehydes (Scheme 24).

Moreover, the chiral Lewis base-catalyzed allylation
provides an excellent transfer of stereochemical informa-
tion because the reaction proceeds through a closed
assembly of the allylsilane, the aldehyde, and the chiral
Lewis base.®® The method has been applied® to the
enantioselective synthesis of the serotonin antagonist
(Scheme 25).
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Oxoallylsilanes 25 are readily prepared by silylcupration
of allene followed by addition of an a,f-unsaturated
ketone. We have recently reported that oxoallylsilanes 25
containing the bulky tert-butyldiphenylsilyl group show
two different reactivity patterns when subjected to in-
tramolecular acid-catalyzed reaction.® The cyclization of
oxoallylsilanes having a hydrogen f to the carbonyl group,
25a,b, gives cyclopentenols 26, which maintain the silyl
group, probably through an intramolecular ene reaction
involving the carbonyl unit and the allylic moiety. How-
ever the cyclization of g,-disubstituted oxoallylsilanes,
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25c—e, proceeds through the normal Se mechanism, losing
the silyl group and leading to methylenecyclopentanols
27 (Scheme 26).

Angle et al. described?®® the synthesis of tetrahydropy-
rans via a formal 4 + 2 cycloaddition reaction of g-trieth-
ylsiloxy aldehydes and allylsilanes. Under Lewis acid
conditions, the activation of the carbonyl group is followed
by addition of the allylsilane to form the fS-silyl cation.
Closure of the triethylsilyl ether on the cation via a six-
membered transition state is more favorable than the
attack of the Lewis acid-complexed alkoxide via a four-
or five-membered transition state (Scheme 27).

The same methodology has been applied to the syn-
thesis of tetrahydrofurans using allylsilanes and aldehydes
that contain one less carbon.*° This stereoselective reac-
tion (Felkin—Anh selectivity) has been used in the syn-
thesis of the muscarine alkaloids (—)-allomuscarine and
(+)-epimuscarine (Scheme 28).

Epoxyallylsilanes are easily obtained by silylcupration
of allene followed by reaction of the intermediate cuprate
with conjugated enones and further epoxidation (via
sulfur-ylide) of the resulting oxoallylsilane. Despite its
synthetic significance, the cyclization of epoxyallylsilanes
has not been widely explored. It has been reported that
the stabilization of the incipient charge in the Lewis acid-
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nucleophilic substitution usually takes place at the most
substituted carbon center of the epoxide*! unless the
presence of electron-withdrawing groups next to the
epoxide destabilizes the developing carbocation*? (Scheme
29).

Recently, we showed that the nature of the substituents
in the silyl group causes important modifications in the
mechanism of these cyclization processes.*® Thus, when
the epoxyallylsilane contains the phenyldimethylsilyl group,
the acid-catalyzed intramolecular reaction results in a
rearrangement—cyclization process, which leads to me-
thylenecyclohexanols 28a,b, instead of the normal prod-
ucts of 5-exo or 6-endo attack.** The diastereoselectivity
of the process depends on the Lewis acid used.*® The
preference for the cis isomer 28a when boron trifluoride
was used is due to the countercurrent flow of electrons
in the Csp2-C(Si) and C=0 bonds, which is favored when
these structural elements are aligned parallel.*> However
the use of a bulkier Lewis acid such as titanium tetra-
chloride leads to the trans isomer 28b as the major one,
this result suggesting the intervention of a transition state
with both the R and the carbonyl-LA groups in equatorial
for minimal steric repulsions (Scheme 30). Work in
progress on epoxyallylsilanes carrying the bulky tert-
butyldiphenylsilyl group shows that Lewis acid-assisted
cyclization occurs without losing the silyl group to give
silylated cyclohexenols.

Conclusions

This report deals with the synthesis of functionalized
allylsilanes and vinylsilanes by way of silylcupration of
multiple bonds and capture of the intermediate cuprate
with electrophiles. The vinylsilanes thus obtained have
been used in multiple applications such as the synthesis
of natural products (salicylihalamide, tetrahydrolipstatin,
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Scheme 30
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and ebelactone A) and the stereoselective synthesis of
disubstituted and trisubstituted alkenes. Allylsilanes pre-
pared by silylcupration of allenes are useful intermediates
in the synthesis of cycles with a potential synthetic interest
(methylenecyclopentanols, methylenecyclohexanols, seven-
membered cycloalkenes, tetrahydropyrans, and tetrahy-
drofurans). The reactions proceed under mild conditions
and are highly diastereoselective.
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